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We determine exact formulas, in the Born approximation, for the scattering cross sections of the
electromagnetic field propagating in a scattering anisotropic stratified medium having an arbitrary
variation of the average dielectric tensor along the longitudinal direction and bounded by outermost
isotropic homogeneous media. The approach is based on a suitable generalization of the Berre-
man’s equations describing the propagation of the electromagnetic field in a transparent anisotropic
stratified medium. A few particularly interesting examples are worked out in order to show, both
analytically and numerically, how the previously known results are recovered under suitable approx-
imations, with particular attention to the subtleties connected to the birefringence of the scattering
medium and the transformations of the solid angles between the scattering and detection regions: it
is shown that these are automatically included in a straightforward manner in the new formalism.
The resulting exact equations can be numerically evaluated in a very easy way, as they involve very
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simple algebraic matrix manipulations.

PACS number(s): 42.25.Bs, 61.30.—v

I. INTRODUCTION

The light scattering techniques are a very useful tool
for the investigation of various different physical systems.
In the case of nematic liquid crystals, for example, the
Rayleigh light scattering can be used to determine all the
elastic and viscosity coefficients [1-4].

The existing theories are based on a number of sim-
plifying assumptions as the single-scattering, or Born,
approximation and the homogeneity of the scattering
medium. The simplest situation arises when the unper-
turbed scattering medium is isotropic, with the same in-
dex of refraction as the surrounding region in which the
incident light propagates and the scattered radiation is
detected. In this case exact and very simple analytical
formulas, in the Born approximation, are available [5].
In the actual experiments, however, usually the average
scattering medium, even when isotropic, has a different
index of refraction with respect to the external regions.
In this case the refraction at the boundaries, in addition
to transmission losses, introduces a modification of the
solid angle of the scattered beam, an effect that is not
trivial at all, as discussed in [6]. The situation is even
more difficult in the case of an anisotropic medium, due
to the noncollinearity between the wave vector and the
Poynting vector. The mere calculation of the asymp-
totic behavior of the scattered field inside a birefringent
medium, neglecting the boundaries, requires a careful
analysis [6-11].

The solutions to the scattering problem that have
been so far given are all based on a Green’s propaga-
tor approach, and therefore require special considera-
tions in order to take into account the stratification of
the scattering environment: in [12], where the Rayleigh
light scattering method for determining the ratios be-
tween the elastic constants of a nematic liquid crystal is
reviewed, the approximate expressions obtained by ne-
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glecting the optical anisotropy of the liquid crystal and
the corrections that must be introduced to take into ac-
count the birefringence of the medium and the presence
of the boundaries are discussed. On the other hand, it
often happens that various boundaries are present, and
sometimes the unperturbed scattering medium itself has
a dielectric tensor varying along the longitudinal direc-
tion [13].

In order to overcome all the difficulties in getting rea-
sonably approximate and tractable expressions in these
situations, we present here a very different approach to
the problem, that allows one to obtain exact expressions
for the scattering cross sections in the case of a scattering
anisotropic medium with an arbitrary variation of the av-
erage dielectric tensor along the stratification direction,
embedded in an arbitrarily stratified dielectric transpar-
ent medium whose outermost parts are isotropic. The
formalism is based on an expansion of the scattered field
in Fourier components in the transverse directions and
a generalization of the equations describing the propaga-
tion of the transverse components of the electromagnetic
field in a transparent stratified medium [14]: it automati-
cally incorporates all the boundary and birefringence cor-
rections in a very simple and compact manner.

In Sec. II we determine the propagation equations,
in the Born approximation, for the transverse compo-
nents of the incident and scattered electromagnetic field
in a birefringent scattering medium, having an arbitrary
variation of the average dielectric temsor in the longi-
tudinal direction, by generalizing the Berreman’s equa-
tions for transparent anisotropic stratified media. The
asymptotic behavior of the scattered field is evaluated
in Sec. IIT and used to obtain the scattered power per
unit solid angle in the external isotropic regions. This
is employed in Sec. IV to derive the differential scat-
tering cross sections, for an unperturbed homogeneous
anisotropic scattering slab sandwiched between identical
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external isotropic dielectric media, by imposing suitable
boundary conditions on the incident and scattered fields.
The resulting equations are analytically compared with
the already known results in Sec. V, by considering the
special cases of a scattering isotropic medium having the
same unperturbed index of refraction of the external me-
dia, and of a uniaxial scattering slab represented by a
planarly aligned nematic liquid crystal cell: for the latter
case approximate analytical expressions are derived from
the exact theory, by neglecting the reflections and trans-
missions at the boundaries, and shown to coincide with
the approximate expressions obtained with the Green’s
propagator approach and the transformations of solid an-
gles between the scattering and the external media. A nu-
merical comparison between the exact and approximate
scattering cross sections is presented and discussed. In
Sec. VI we obtain a general formula giving the scattering
cross sections in an anisotropic medium having an arbi-
trary stepwise or continuous variation of the unperturbed
dielectric tensor. Finally, in Sec. VII, we summarize our
results.

II. FIELD EQUATIONS

Let us consider a stratified medium consisting of an
anisotropic scattering slab, confined between the planes
z = 0 and z = d of a Cartesian coordinate system
(z,y, z), sandwiched between external dielectric homo-
geneous media having index of refraction n;. Supposing
that the fluctuations of the dielectric tensor giving rise
to light scattering are much slower with respect to the
optical frequency of the incident monochromatic beam,
we can neglect the frequency shifts of the scattered light
and thus write the total electromagnetic field as

-

E(7,t) = E(7) exp(—iwt) + c.c.
ﬁ(F’t) = ﬁ(f') exp(—iwt) + c.c.,

(2.1a)
(2.1b)

where c.c. indicates complex conjugate. We write the
components €qg (o, = x,y, z) of the complex relative
dielectric tensor of the stratified medium as

€ap(T)t) = Nap(2) + deap(7,t) , (2.2)
where 743(z) represents the relative dielectric tensor of
the unperturbed structure and thus depends only on the
transverse coordinate z, while de,g(7, t) is a small fluctu-
ation responsible for the light scattering that is different
from zero only for 0 < z < d; we decompose the lat-
ter in a bidimensional Fourier integral in the transverse
plane (z,y) according to

deap(T,t) = / 0€ap(p, 4, 2, t) expliko(pz + qy)] dpdq

(2.3a)

N ko2 .
6€aB(p7qazat) = (2_:_) /Jﬁag(r,t)

x exp[—iko(pz + qy)] dz dy , (2.3b)

ko = w/c being the modulus of the vacuum wave vector
of the incident field.

The total electromagnetic field propagating in the
stratified medium is now decomposed in an incident (ini-
tial) and a scattered (final) part

E = Ei + Ef y (2.43.)
ﬁ:ﬁ,‘-{—ﬁf . (2.41’))

For the translational invariance of the unperturbed struc-
ture in the transverse plane, we can look for a plane wave
incident field in the form

E; = Z}/? &(2) expliko(piz + 4:9)] , (2.5a)
ﬁi = Zo_l/2 I-i,-(z) exp[iko(pil‘ + q:y)] ) (2'5b)

where Zo = +/po/€o is the vacuum characteristic

impedance and

p; = nysind; cos p; , (2.6a)

(2.6b)

¢; = nysind; sinyp; ,

?¥; and p; being the polar angles of the incident beam,
measured in the homogeneous incident medium having
index of refraction n;. The scattered field, in turn, can
be decomposed in Fourier integral in the transverse di-
rections

E} = Z;/z/gf(p, q,2) exp[iko(pz + qy)| dpdgq , (2.7a)
Hy=2;'"" / hs(p, q, z) expliko(pz + qu)] dpdg . (2.7b)

By inserting Egs. (2.1)—(2.7) into the Maxwell equations,
in the Born approximation, i.e., neglecting the products
between the dielectric tensor fluctuations and the scat-
tered fields, that give rise to multiple scattering, and al-
gebraically expressing the z components of the fields as a
function of the transverse components [14,15], we get the

following set of equations for the transverse components
of the fields:

dpi
d’l/; = 'LkoDi'l/),' N (2.88.)
d

W1 = ikoDyiy + koGt (2.8b)

that represents a generalization of the Berreman’s equa-
tions for stratified homogeneous anisotropic media [14].

In Eq. (2.8a) 9; is the column vector of the normal-
ized transverse components of the incident electromag-
netic field

€iz
hiy

e,-y

_hiz

‘lb,; = 'l/),'(Z) = , (29)

with e;; = €; - X, eiy = € ¥, hiz = hi - X, hiyy = hi - J,
where % (¥) is the unit vector in the z (y) direction; the
free evolution of the incident plane wave in the unper-
turbed structure is governed by the 4 x 4 matrix D; that
is given explicitly by [14,15]



4554 P. GALATOLA 49
e 1—pinc ~Pi);: My —Pigin;;
D= | e e Mexlles — @ PN Tar ey 0 Mexllay +Pidi —Gillig e (2.10)
i e PG G ey 1—gint '
NMye — Npz MyzTze T Pi%i —PiNl,; Myz  Myy — Mzy MyzTzy — pz2 ‘Qinz‘zlnyz
1
Similarly, in Eq. (2.8b), 5 is the column vector con-  Gyy = g;n ;! (0, 10:0¢,, — 6,.) (2.12h)
taining the transverse components of the scattered field Gar = an=) (n=1n. ¢ sE 2.12i
for a given (p,q) Fourier component, being the various 31 = 90z2 (n” MexdEsr — 08:2) | (2.121)
Fourier components independent one of each other, Gsz = qpin; o€, (2.12j)
€fe G33 = qnz_zl (ﬂ;lﬂzy55zz - agzy) » (2'12k)
h G134 = QQiﬂ;225€zz 3 (2121)
vr=dsmaz)=| V| 2.11 - AP _ I
f f( ’ ) €ry ( ) Gy = nzzlnyz (ﬂzzlnzméfzz - 6621) + (Sey“” - nzzlnmtseyz '
—hfe (2.12m)
. Gaz2 = pim,, (05 Ny=06:. — 8Ey2) (2.12n)

\ﬁ”th €fe = €f(Paq,Z) : i‘a €fy = Ef(P,QaZ) . yv h'f:z: =
h¢(p,q,2)-X,and hyy = hy(p,q,2)-9. The matrix Dy de-
scribes the free evolution of each transverse Fourier com-
ponent of the scattered field in the unperturbed struc-
ture, and is given by the same expression (2.10) with p
and ¢ replacing p; and g;, respectively. The coupling be-
tween the incident and the scattered field is expressed by
the matrix G in the right hand side of Eq. (2.8b) whose
elements are given by

Gaz = 13, yz (2 112y 08z — 8E:y) + 08y — 17! 12y 08y,
(2.120)

G44 = Qinz_zl (ﬂz_zlnszEzz - 6€yz) ) (212p)
where, for a, 8 = z,y, 2, 0€up = 0éap(p — Pi,q — 4, 2, t).
Therefore the coupling matrix G depends linearly on the
transverse Fourier transforms of the fluctuations of the
dielectric tensor computed for a transverse wave vector
corresponding to the scattering momentum.

G = pn ;' (ﬂz_zlﬂzazégzz —0ésq) (2.12a) The longitudinal components of the scattered field can
Grz = ppin 26e,, | (2.12b) be expressed as a fuqcti‘on of the transverse components
1/ -1 - - of the scattered and incident field as
G13 = pn,, (lez nzy5€zz - 6Ezy) , (2'12C)
Gra = pains26¢,. | (2.12d) ( s ) = Cyy+ Crithi (2.13)
Go1 = 17 ez (150200802 — 20) + b0z — 17 M20bt0s 2
(2.12¢)  with
Gz = pin,' (12 M0 08z — 08z) (2120) o ( e e TP Ty ) . (2.14)
Gas = N ez (15 Mey 08z — 0Eny) + 8Eny — 17 N2y 0éss —q 0 p 0 '
(2.12g) and
J
Cyi = (n;zl[n;lnmgéu — 0E.q] pon;g&n n;l[n;‘nzygéz = 0&zy] qw;;&zz ) _ (2.15)

Similarly, for the longitudinal components of the incident

field, we have
€iz o
( h.iz ) - Cl wl )

where the 2 x 4 matrix C; is given by the same expres-
sion (2.14) but with p; and g¢; replacing p and g, respec-
tively.

(2.16)

III. ASYMPTOTIC BEHAVIOR

In order to compute the scattered power per unit
solid angle, we must determine the asymptotic behav-
ior of the scattered field (2.7) for kor > 1, where r =

f

Let us first consider the forward scattered power, i.e.,
the asymptotic solutions in the region z > d. In this
zone the coupling matrix G is zero, since no scattering
occurs, and the scattered field freely propagates in a ho-
mogeneous medium having index of refraction n;. The
solutions of Eq. (2.8b) are then given by a linear super-
position of the four proper electromagnetic waves w;ﬁ)
(n=1,...,4) that are eigenvectors of the z-independent
propagation matrix Dy obtained by setting 7.5 = n? 8as,
dop being the Kronecker’s 4,

Yi(p,0:2) = Y cn(pr0) ¥ (P, 9) explikora (P, 9)7] ,

n=1

(3.1)
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where the c,(p,q) are z-independent coeflicients and the
Yn(p,q) are the eigenvalues of the matrix Dy associ-

ated to the eigenvectors 1/;;") (p,q)- As it is evident, the
proper waves are four plane waves with the same value of
the transverse wave vector, two forwards and two back-
wards propagating, each with two polarization states or-
thogonal to the propagation direction: for nonevanescent
waves, when properly normalized, they form a complete
orthonormal set in the sense specified in [15], a property
that holds true for all nonabsorbing media. Precisely, by
choosing linear transverse electric (TE) and transverse
magnetic (TM) polarizations, and normalizing the waves
in such a way that they have a 2 component of the time-
averaged Poynting vector equal to 1 (—1) for the forwards
(backwards) solutions, we can put

s/u cu/ny
¢(1) _ 1 su 1/J(z) _ 1 [ eny/u
f V2| —¢c/u | 7S V2 | su/ny |
—cu sny/u
(3.2a)
s/u —cu/ny
b = 1 | —su b = 1 | ceny/u
f V2| —¢/u | 7S V2 | —su/ny |
cu sny/u
(3.2b)
with
e P4
Vi@’ VP +¢
u=4/n}—(p*+¢%). (3.3)

With these conventions 1/:}1) (1/)5,2)) represents a forward
TE (TM) wave, while %" (4{") a backward TE (TM)

wave. The corresponding eigenvalues are given by

71(P:9) = 12(P, ) = V4+(p,q) = y/n} — (P + ¢?),

(3.4a)
73(p,9) = 1(p,0) = 7-(p,9) = —y/n — (P* + %),
(3.4b)

as easily follows also from the fact that the modulus of
the wave vector of each plane wave must be equal to kon;.
Therefore the total electromagnetic field generated by all
the progressive eigenvectors having a given polarization
state reads

By() = 22? / e 0)E™ (p, )

x expliko(pz + qy + v+ (P, q)2)]dpdg, (3.5a)
() = 25" [ el p.0)
x expltko(pz + qy + v+ (P, 9)2)]dpdg, (3.5b)

where € f(") (ﬁ}")) is the total electric (magnetic) field cor-

responding to the transverse components 1/15,") andn=1
(n = 2) for the TE (TM) polarization.

The asymptotic behavior of (3.5) is easily evaluated
with the help of the stationary phase method [16,17],
that amounts to expanding the rapidly oscillating phase
factor in the complex exponentials up to second order in
a Taylor series about its stationary point (p = pf,q =
gs) and to substitute the slowly varying amplitudes with
their values at the stationary point. For z > 0 we easily
obtain

Ef(7) = (%) Zy/*ny cos 9 cn(py,45)
x&(™ (py,45) exp(ikonar) , (362)
Hy (M) = (z—::;) 250y cos 9 ca(py, a5)
k™ (pg,qr) exp(ikonar) , (3.6b)
with
Py = nisindy cospy , (3.7a)
g5 = nysindy sinpy , (3.7b)

being ¥y and ¢y the polar angles of the scattering direc-
tion. It is easily verified that, as it is obvious, the back-
ward propagating Fourier components give rise to back-
ward propagating spherical waves, and must be therefore
absent for z > d.

The scattered power per unit solid angle for a given
polarization is now given by

where £ = 7/ is the unit vector parallel to the scattering

(3.8)

direction and § is the time-averaged Poynting vector

S=E;xH} +cec.. (3.9)
According to (3.6) and taking into account that the
proper waves have been normalized to unit 2 component
of the time-averaged Poynting vector, that in an isotropic
medium is directed along the wave vector, we then im-
mediately obtain

dP,

—g = Nnicosdylen(ps ap)l®, (3.10)
A = 27 /ko being the vacuum wavelength of the incident
radiation.

In the region z < 0, instead, only the backward prop-
agating Fourier components must be present in order to
give rise to a spherical wave propagating towards infinity.
The corresponding scattered power per unit solid angle
for a given polarization is again given by Eq. (3.10) with
n = 3,4, but for a scattering direction characterized by
the polar angle m — 5.

IV. BOUNDARY CONDITIONS AND
SCATTERING CROSS SECTIONS

Let us now consider the propagation of the incident
and scattered fields and the related boundary conditions.
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According to Eq. (2.8a), in the Born approximation the
incident field freely propagates in the unperturbed struc-
ture. Supposing that the anisotropic scattering slab is
homogeneous, the solution of Eq. (2.8a) for 0 < z < d
reads

$i(z) = exp(ikoDiz) ¥:(0) ,

where D; is the propagation matrix (2.10) of the unper-
turbed anisotropic slab.

In the external regions z < 0 and z > d the incident
field, as we already discussed for the scattered Fourier
components, is represented by a linear superposition of
the four plane waves that are eigenvectors of the external
D; matrix, obtained by setting 7a3 = n284p5 in (2.10).
Using the same conventions as for the scattered fields,
these eigenvectors 1/)1(") (n =1,...,4) are given by Egs.
(3.2) and (3.3) with p; and ¢; replacing p and gq, re-
spectively. Therefore we make the decomposition, cor-
responding to the ¢ representation defined in [15],

(4.1)

4
Z ${™ fu(2) = Tii(2) | (4.2)

where T; is the 4 X 4 matrix whose columns are given
by the eigenvectors 1/)5"), and ¢;(z) is the column vec-
tor containing the amplitudes f,(z). Now in the upper
isotropic region the transmitted field must be represented
by only forward solutions; therefore, with our conven-
tions ¢;(d*) = ¢$t) has the third and fourth elements
equal to zero. In the lower isotropic region, instead, the
total field is represented by the sum of an incident and
a reflected part, so that we can put ¢;(07) = ¢1(-t) + ¢,(-r),
where ¢E’) is a given incident vector having the third and

fourth elements equal to zero and qsf.” is the reflected
unknown field, whose first and second rows are equal to
zero. We can now group the reflected and transmitted
fields in a single vector by putting

¢ =P g™V,
o) = P g™t |

where P, (P;) is the 4 x4 diagonal projector matrix whose
first two diagonal elements are equal to zero (one) and
last two diagonal elements are equal to one (zero). From
the continuity of the transverse components of the elec-
tromagnetic field across the dielectric boundaries and ac-
cording to Egs. (4.1)-(4.3) we then obtain

(4.3a)
(4.3b)

o = w; ¢ (4.4)

where
W; =[P, - S;P,]7' S, , (4.5a)
S; = T; ! exp(ikoD;d) T, (4.5b)

In this way the total incident field inside the scattering

slab is given by
¥i(z) = exp(ikoD;z) T; [Pr Wi + 1) ¢ (4.6)

with I being the 4 x 4 identity matrix.

Let us now go on to the scattered field. The general
solution of Eq. (2.8b) inside the scattering medium reads

Y¢(z) = exp(ikoDy2z) [1/)f(0) + tko /2 exp(—ikoDyz")
0
G(z')z/)i(z')dz’] , (4.7)

where again we have considered the case of a homoge-
neous anisotropic slab. Similarly to Egs. (4.2) and (3.1),
we now decompose the scattered field in terms of the
eigenvectors of the external homogeneous media

Z‘/’f on(2

where Ty is the 4 x 4 matrix whose columns are given

=Tys¢s(2) (4.8)

by the eigenvectors 1/)}"), and ¢¢(z) is the column vector
containing the amplitudes c¢,(z). The boundary condi-
tions on the scattered field are that for z = 0~ (z = d™)
the solution consists only of backwards (forwards) waves,

so that we can introduce a column vector ¢§,Tt) such that

= Pr ¢§:’t) 3
=P ¢

(4.9a)
(4.9b)

$£(07)

p5(d")
Finally, by putting together Eqs. (4.6)—(4.9) and using
the continuity of the transverse components of the scat-

tered field across the dielectric boundaries, we obtain the
amplitudes of the scattered waves in the form

o7 =T ¢l

where I is the scattering matrix

(4.10)

= iko [Ts P, — exp(ikoDyd) Ty P,] ' exp(ikoDyd)

d
X [/ exp(—tkoDyz) G(z) exp(ikoD;z) dz
0

xT; [P,-W, +I} . (4.11)

The scattering cross sections, i.e., the ratios between
the scattered power per unit solid angle and the incident
power per unit surface orthogonal to the propagation di-
rection for given polarizations of the incident and scat-
tered fields, are now readily evaluated on the basis of
Eq. (3.10) and taking into account the fact that the in-
cident proper waves have been normalized to unit power
flux along the z direction and their Poynting vector is in
the direction of propagation,

do

79 = A2n2 cos ¥; cos 94| Tnn|? (4.12)

where I',,, are the elements of the scattering ma-
trix (4.11) computed for the transverse scattering wave
vector (3.7) and m = 1 (m = 2) for TE (TM) forward
scattering, m = 3 (m = 4) for TE (TM) backward scat-
tering, while n = 1 (n = 2) for TE (TM) incident polar-
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ization. We recall that, with our conventions, the back-
ward scattering cross sections obtained from Eq. (4.12)
for m = 3,4 for given polar angles (J¢,¢¢) correspond
to the scattering direction (m — ¢, py).

V. COMPARISON WITH THE CLASSICAL
FORMULAS

In order to compare our approach with the classical
formulas for light scattering, obtained by making use of
Green’s propagator methods [5,6,10,11,18], we work out
a few simple examples.

Let us begin with the simplest situation, namely the
case in which the unperturbed scattering medium is
isotropic, with the same index of refraction n; as the ex-
ternal homogeneous media, in such a way that no reflec-
tions occur at the boundary between the scattering and
the external media. The exponential matrices describing
the free propagation of the incident and scattered waves
in the scattering region can then be expressed in terms
of the matrices T; and T, respectively, whose columns,
as we already discussed, contain the proper waves (3.2)
of the isotropic medium

exp(ikoDaz) = To exp(ikoAaz) Tt (a=1,f),

(5.1)

where A; (Ay) is the diagonal matrix whose diagonal el-
ements are the eigenvalues v, (n = 1,...,4) of the ma-
trix D; (Dy), given by Egs. (3.4) with p; and ¢; (ps
and gy) replacing p and g, respectively. The matrices
Ti_1 and Ty ! are readily evaluated with the help of the
orthonormality of the proper waves [15], and, with the
definitions (3.3), read

su s/u —cu  —cfu

71— 1 enif/u cufng snyfu sufn,g . (5.2)
V2 su —sfu —cu c/u
—cni/u cuf/ny —snyfu su/ng

Using these expressions, according to Egs. (4.12)

and (4.11), the scattering cross sections can be cast in
the form
do

— =n2A"YF-62(qt) 1),

gt (5.3)

where 1 (f) is the unit vector parallel to the incident (scat-
tered) electric field and %€ (q,t) is the Fourier transform,
computed for the scattering wave vector ¢, of the fluc-
tuations of the dielectric tensor, whose components are
given by

deap(q,t) = / Seqp (7, t) exp(—iq - 7) dF

(a,8=1z,y,2) . (5.4)

Equation (5.3) coincides, as it should be, with the for-
mula obtained by Green’s propagator methods [5].

4557

As a next richer example, we consider the case in which
the scattering medium is an uniaxial anisotropic crys-
tal, in order to test the corrections introduced by the
misalignment between the Poynting vector and the wave
vector directions inside an anisotropic crystal, and the
transformations of solid angles between the internal and
external media that are used to convert the internal scat-
tering cross sections, computed with Green’s propagator
techniques, to the externally measured quantities.

Precisely, for the sake of definiteness, we suppose that
the scattering medium is a homogeneously planarly ori-
ented nematic liquid crystal undergoing small thermal
fluctuations [19]. The geometry that we consider is shown
in Fig. 1. The components of the relative dielectric ten-
sor (2.2) inside the liquid crystal sample are given by

€aB = (ng - nz) nang + n?, 8as (5.5)

n, (n.) being the ordinary (extraordinary) index of re-
fraction, and n, the Cartesian components of the nematic
director fi, a unit vector that specifies the local optical
axis direction. For small thermal fluctuations around the
homogeneous planar orientation fi = %, we can put [19]

A=%X+n,(7t)§+n,(Ft)Z, (5.6)

where, in the (z,z) plane, ny(7,t) [n,(7,t)] is the small
amplitude twist-bend (splay-bend) fluctuation compo-
nent. Therefore, the nonzero components of the un-
perturbed relative dielectric tensor inside the sample are
given by

Nexe = ’nz y (5.78.)
Nyy = Nzz = nf, , (5.7b)

while, neglecting the products of the fluctuations, the
nonzero components of the dielectric tensor fluctuations
are

Oeay(F1) = beya(Ft) = (n2 —n2)ny(7,1),

66‘” (F’ t) = 66”’(1?’ t) = (n: - "3) nz("-'.a t) .

(5.8a)
(5.8b)

f\9s

y 9;

FIG. 1. Scattering geometry for the planarly oriented ne-
matic liquid crystal cell. The sample is confined between the
planes z = 0 and z = d with an unperturbed director f par-
allel to the z axis. The scattering occurs in the (z, z) plane,
9; (94) being the incidence (scattering) angle. % is the in-
cident plane wave direction, f (b) the forwards (backwards)
scattering direction.
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The analogous of Eq. (5.1) now reads
exp(ikoDoz) = T, exp(ikoALz) Tt (a=1,f),
(5.9)

where the matrices 7' contain the normalized proper
modes of the unperturbed uniaxial crystal, that in our
geometry are again given by TE and TM modes. With

and ¥ = ¥; (¥ = ¥y) for the incidence (scattering) ma-
trices 7/ and T, ! (T} and T}_l). As it is obvious, the T
matrices of the external isotropic media in this scattering
geometry are given by the same expressions (5.10) with
n, = ne = np in Egs. (5.11). The diagonal elements of
the diagonal matrices A’ in (5.9) are the eigenvalues of
the Berreman’s matrices D in our uniaxial medium

the same ordering conventions used for the external me- AL = yre(Y) = {/n2 — n?sin® 9, (5.12a)
dia, we have, for scattering in the (z, z) plane, n
6 u 0 —u Ay = yrMm(¥) = f\/ng —n?sin®9 (5.12b)
m m o
1 -1 -1 _
TI — \—/—“2‘ —3_1 u.bn _3_1 'U«,(,)n , (5103) A;’il} = -—-’YTE('ﬂ) 5 (512C)
—u. 0w, 0 Ay = —yrm(9) (5.12d)
0 0 —u —u-l again with 9 = 9; (¥ = J¢) for the incidence (scattering)
1 w=l u Oe o matrix A; (A}). Substituting Egs. (5.7)—(5.12) in Egs.
T ! = 7 o 6" —w. u-l , (5.10Db) (4.11) and (2.12) we then obtain the scattering matrix
€ e
——u,_nl Uy O 0 ] , . -1
" [ = iko [Ty P. — T} exp(ikoAyd) Ty Ty P.| T
wi
x exp(ikoAsd) RT; 'T; [P,W; + I] , (5.13)
4 2 _ 2 . 2
Ue = {/ng —nysin® ¥, (5.11a) where, of course, W; is given by (4.5a) but with
: ng — n% sinz 9 Si = Ti_—l TII exp(zkoAid) Ti,_l Tl, N (5.14)
Up=T 2 (5.11b)
VoTle , and R is the matrix
J
0 _Cn(yTM+,TE+) 0 CnéTM‘,TE*)
+ + + - - - +
ne 1 —Dng,TE ,TM) _(A+B)n£TM ,TM™) —Dn(yTE ,TM™) (A-B)ngTM ,TM*) (5.15)
== A R , .
2 0 Cn!(,TM ,TE™) 0 —-Cn!(,TM ,TE™)
+ - + - - - - -
—DnLTE ,TM"™) (4 - B)ngTM ,TM™) —Dn!E,TE ,TM"™) —(A+ B)ngTM ,TM™)
I
with + pt d
ngt ) = / na(pf = pirt)
0
n2 n? — n2sin 9. x exp{iko[£vk (¥:) F v (Vf)]2}dz, (5.17)
A= (—;—1) N ;—;—'—Z——lnlsinﬁf ,  (5.16a)
L n3 — nisin®Jy where the first (last) pair of upper and lower signs on
the left hand side must be concurrently selected with the
2 2_ 2.2 first (last) pair of upper and lower signs on the right hand
B=(2e_1)¢ w nysind; , (5.16b) side, and
n? n2 — n?sin® 9;
na(p,t) = 272 /na(f’, t) exp(—ikopz)dzdy . (5.18)
C_(n'ﬁ—nf,)4 n2 — n?sin®¥Y; 5.16
T Vrone \[n2- nZsin? 9 ’ (5.16¢) Equation (5.15) shows that the splay-bend fluctuation
modes give rise to scattering only for TM incident and
scattered waves, while the twist-bend modes only for TM
D (n2 —n2) ,[n2 —n?sin’d; (5.16d) (TE) incident and TE (TM) scattered fields.

. b
VToTe n2 — n?sin®¥;

the symbol nLTM+’TE+) represents the amplitude of the

Fourier component of the twist-bend fluctuation mode
corresponding to a forward incident TM wave and a for-
ward scattered TE wave, and similarly for the other co-
efficients. According to (5.12), for o = z,y and K,L =
TE,TM these terms are explicitly given by

The matrices that multiply R on the left and right in
the scattering matrix (5.13) represent the effect of the re-
flections of the scattered and incident fields, respectively,
at the boundaries. In principle they could be determined
analytically, but in practice the resulting expressions are
far too cumbersome to be useful. Therefore we neglect
the reflections by assuming, for « = ¢, f, T), = T in Egs.
(5.13) and (5.14). With this approximation, the nonzero
scattering cross sections result
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2 .2
do(TETMD) o (TE M) 2 (n —n2)" [n2 —n}sin® Y
——q =T nfny * |? cos¥; cos ¥ o n? —nisn?d; (5.19a)
— 2 .2
do(TE,TM™) 22| (TE*+,TM-)2 (n2 —n2)" [n2 —n2sin®V;
—q =" nilng " |? cos 9; cos ¢ o nZ —nZsin?o; (5.19b)
2
do(TM,TEY) 2.2, (TM*,TE* (nZ - n2)” [nZ —n?sin®Y;
_ TE)|2 cos 9. cos 9 ¢ e 1o o T MySIn Vi 5.19¢
aQ ™l " cos Bi cos g ==0 = 2 T2 in? 9, (5.19¢)
- 2
do(TM,TE™) 22, (TM*,TE-)2 (nz —n2)" [nZ—n?sin®Y;
—g =" nilng, |¢ cos ¥; cos ¥y gy n2 - n2sn?9, (5.19d)
2
o (TM,TM*) 2 2 [sin 954/n2 — n¥sin® ¥; + sin¥;4/n2 — ndsin’ 19,]
b 7r2n‘{|n£TM+'TM+)|2 cos J; cos V5 (—; — 1) ,
dQ ng \/ [n2 — n2sin® 9] [n2 — n}sin® 9]
(5.19¢)
2
do(TMTM") 2 2 {sin 954/n2 — nisin®¥; — sin¥;4/n2 — n?sin® ﬂf]
’ - n
Ud—Q = 7r2n‘11|n£TM+’TM )|2 cos ¥; cos I (—; - 1) — ,
" \/[n?, — n?sin® 9y] [n2 — n?sin® ¥;]
(5.19f)
[
where the symbol do(TE:-TM") /dQ) stands for the differ-  the wave vector direction into the external ones [6,18)
ential scattering cross section for an incident TE wave
and a forwards scattered TM wave, and similarly for the dQin n? cos 95 cos &5 (5.21)
other cases. dQout n; cos s )

Let us now consider the differential scattering cross sec-
tions for a homogeneous anisotropic medium computed where 15 is the angle formed between the Poynting vec-

using the Green’s propagator [6,18,20] tor of the scattered wave and the z axis. Lastly, we
must take into account that (5.20) refers to an incident

( do ) _ A4 ng |f- - 52(qt) -1 (5.20) power flux P{® computed inside the anisotropic medium,
dQ/;, mnicosd; cos?dy ’ ’ ) while (5.19) to the incident power flux PPt outside the

anisotropic medium. Now it is easy to understand that
where n; (ny) is the index of refraction for the incident the way in which we have neglected the reflections of
(scattered) ﬁeLd, d; (5) is the angle formed betvzeen the the incident field is equivalent to supposing that the 2
electric field E and the electric displacement D of the components of the Poynting vectors inside and outside

incident (scattered) wave, that coincides with the angle the anisotropic medium are equal; in this approximation,

formed between the wave vector and the Poynting vector since the external Poynting vector is directed along the

directions, and the other symbols have the same meaning wave vector, we have

as in (5.3). In Eq. (5.20) the solid angles are referred to )

the scattered wave vectors directions. P*  cos; (5.22)
In order to compare (5.20), that refers to the inside of Pt T costp; ’

the scattering medium, with (5.19), that instead refer to
the outside, we must introduce two corrections for the  being v; the angle formed between the Poynting vector

incident and scattered fields. First of all we must trans-  of the incident wave and the z axis. Then, from (5.20)-

form, according to Snell’s law, the internal angles about (5.22), the external scattering cross sections read

J
in 2
(%) = (%) s = e ff 5% 1P (5.23)
aQ / . dQ /. dQgu PP n; cosd; cosP; ngcosdy cos Py
[

and a straightforward calculation shows that they coin- complications arising from the misalignment between the
cide with (5.19). wave vector and the Poynting vector directions inside an
This example demonstrates how Eq. (4.12) automat- anisotropic medium [6-9]. Moreover, it also fully incorpo-
ically takes into account all the solid angle transforma- rates all the boundary reflections and transmissions for

tions between the internal and external media, and the both the incident and the scattered fields. To see how
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these affect the results, we show, in Figs. 2 and 3, the
exact and the approximate normalized scattering cross
sections due to the splay-bend fluctuation modes. For
a, 8,7 = +, — these are defined as

() 1 do(TM, TM")

Pap = ] (TMcx,TMB)y2 dQ
nz

: (5.24)

where the scattering cross section is computed by putting
to zero all the Fourier components of the fluctuations
different from ni" ™ ‘TMB).

The direct contributions to the forward and backward
normalized scattering cross sections, due to the Fourier
components of the fluctuations directly coupling the for-
ward incident beam inside the anisotropic medium with
the forward and backward, respectively, internal scat-
tered fields, are shown in Figs. 2(a) and 2(b), respectively.
The solid lines are the exact curves, numerically com-
puted on the basis of Eq. (5.13), while the dashed ones
are the approximate expressions given by Egs. (5.19¢)
and (5.19f). It is apparent that even for a relatively
high mismatch between the internal and the external in-
dices of refraction, the approximate analytical expres-

1.0

(+)
P+

11§ 1 1

o
wt

| A R S A B RS |

e
=

t
1lodll

F D SO I I |

0-()0 TTT I TTITT ] TITTTTTITT | TTTTTTTTT ] TTTTTTTTT
—90 45 0 45 90
U [deg]

sions give a fairly good answer; the biggest differences
with the exact curves are mainly due to the interference
fringes created by the multiple reflections at the bound-
aries. These figures also show that, even for the exact
curves, pﬂ(ﬂi,ﬂ,) = pg__)(ﬂ,-, —3Jy), a reciprocity rela-
tion that is linked to the symmetries of the Berreman’s
propagation matrices in our lossless unperturbed struc-
ture.

The other effect induced by the boundary reflections
is the mixing of the various longitudinal Fourier com-
ponents. In fact, as shown in Figs. 2(c) and 2(d), the
Fourier component of the fluctuations that couples the
forward incident beam with the forward (respectively
backward) scattered wave, also gives rise to a contribu-
tion to the backward (respectively forward) scattering,
due to the reflections of the scattered fields. As one sees
from the figures, for high scattering angles these contri-
butions can be comparable or even dominant with re-
spect to the direct terms. The reciprocity relation noted
in the previous two cases holds true also in this case,
as p(;g(ﬂi,ﬁf) = p(:_) (9:,—0). Figures 3(a) and 3(b)
show, instead, smaller contribution to the forward (re-
spectively backward) scattering due to reflections of the
incident field; here too we have the reciprocity condi-

1.0
] 9, = 45° (b)
P
0.5 . 9 =0°
: Lo~ A REN
Y A N
T \Y
i \|
0.0 l||||||||||llllll||[llT'|||[‘[l’T|l|Tlll
—90 —45 0 45 90
Uy [deg]
0.10
: (d)
4 o
Py - 4
0.05 W
. I
] v, =0°
000 ] I‘III‘TT—lll|\TI]I||l!|lll||l||'|)l||lr1T
~90 15 0 45 90
Uy [deg]

FIG. 2. Normalized scattering cross sections for TM incident and scattered polarizations for the geometry shown in Fig. 1
as a function of the scattering angle ¥; with incidence angles equal to ¥; = 0° and ¥; = 45°. The ordinary (extraordinary)
index of refraction is n, = 1.5 (n. = 1.7); the index of refraction of the external media is n; = 1; the thickness of the sample
is equal to d = 20A. (a) Direct contribution to the forward scattering. The solid lines are the exact curves, the dashed ones
the approximate analytical expressions obtained by neglecting the reflections and transmissions at the boundaries. (b) Same as
(a) but for the backward scattering. (c) Indirect contribution to the backward scattering due to the reflections of the scattered

waves. (d) Same as (c) but for the forward scattering.
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FIG. 3. Same as Fig. 2 but for the longitudinal Fourier
components giving rise to indirect contributions to the for-
ward [(a) and (d)] and backward [(b) and (c)] scattering due
to the reflections of the incident field [(a) and (b)] and of both
the incident and the scattered fields [(c) and (d)].

tion P(—+42(‘9i”9f) = o) (9, —9¢). Finally the smallest

contributions, due to the reflections of both the incident
and the scattered fields, are shown in Figs. 3(c) and 3(d);

even in this case we have p(__l(ﬂ,-,ﬂf) = pM (9, —F4).

Similar results are obtained for the depolarized scatter-
ings induced by the twist-bend fluctuation modes.

VI. ARBITRARILY STRATIFIED MEDIA

A further advantage of our approach, with respect to
the classical Green’s propagator calculations, is that it
can be immediately generalized to the most arbitrary
variation along the longitudinal direction, stepwise or
continuous, of the dielectric tensor of the unperturbed
structure, both in the scattering and in the external re-
gions. This is useful for the correct analysis of the actual
situations, in which the external media are usually strat-
ified, and for the study of distorted scattering media [13].

It is easily recognized that, when the outermost media
are isotropic, the most general case can be always repre-
sented by a medium with a continuous variation of the
unperturbed dielectric tensor in the region 0 < z < d,
bounded by two homogeneous isotropic media for z < 0
and z > d having indices of refraction n; and ny, respec-
tively: in fact, when the transparent external media are
stratified, we can consider the intermediate transparent
slabs as a part of the varying scattering medium hav-
ing zero amplitudes for the fluctuations of the dielectric
tensor.

Thus, by introducing the evolution matrices U;(z)
and Ug(z) that are solutions of the unperturbed prop-
agation equations for 0 < z < d,

%z(z) =tko Da(2) Ua(z), Ua(0)=1 (a=14,f),

(6.1)
Egs. (4.11) and (4.12) respectively become

T = iko [Ty (d) P, — Us(d) T¢(0) P;] " Us(d)

d
X [) U}_l(z)G(z)U,-(z)dz T;(0) [PW; + 1],

(6.2)

and

d
27 = A2n2 cos¥; cos 94|Tmal?, (6.3)
dQ
where n = ny (n = n;) for forward (backward) scatter-
ing; the matrix W; is given by (4.5a) but with
S; = T (d) Ui(d) Ti(0) 5 (6.4)
the matrices T;(0) and T#(0) contain the proper waves for
the incident and scattered fields in the incidence isotropic
medium having index of refraction n;, and, similarly,
Ti(d) and T¢(d) in the transmitted medium having index
of refraction n¢. Finally, of course, in Egs. (2.6) and (3.7)
we must substitute n; with n; and ny, respectively.
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VII. CONCLUSIONS

We have developed an alternative approach, based on
a suitable generalization of the propagation equations for
transparent stratified anisotropic media, to exactly cal-
culate, in the Born approximation, the scattering cross
sections in a generic anisotropic stratified medium.

By working out a few significant examples we have
also shown that, with appropriate approximations that
amount to neglecting the reflections and transmissions of
the incident and scattered waves at the dielectric bound-
aries, from our formulas we recover the already known re-
sults obtained with a much more delicate analysis based
on the study of the asymptotic behavior of the Green’s
propagators for anisotropic media and a separate care-
ful exam of the effects introduced by the boundaries [6].
With our formalism, instead, all the boundary effects
and the corrections introduced by the birefringence of
the scattering medium are automatically taken into ac-

count. Moreover, the resulting formulas can be straight-
forwardly computed numerically, since they involve very
simple algebraic matrix manipulations: in this respect a
comparison between the exact and the approximate ex-
pressions has been presented, showing how the boundary
conditions alter the scattering cross sections and mix the
various longitudinal Fourier components of the fluctua-
tions.

Finally we have shown that our results allow one to
tackle the case of a continuously distorted scattering
medium, a situation that cannot be dealt with using the
Green’s propagator approach, in a way just as simple as
for a homogeneous medium.
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